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Exotic states in the CBFW of gumtisled vortices for 
sarperfiuids and superconduetors 

M A4 Salomaa and G E Volovikf 
Low Temperature Laboratory. Helsinki University of Technology, SF-02150 Espoo 15, 
Finland 

Received 22 August 1988 

Abstract. We consider the core structures of quantised vortex lines in Bose and Fermi 
superfluid systems. We emphasise the result that, within the core of a singly quantised vortex 
iine in a Bose superfluid. there spontaneously appears a condensate of boson pairs in a 
relative d-wave state, instead of the normal fluid. Also, in the case of the singly quantised 
Abrikosov vortex line in a superconductor. instead of normal electrons there emerges a 
novel state of superconductiv:ty. in which a condensate of bosons made of four fermions 
appears. In particular, we discuss these core structures as further examples for the flaring- 
out of the vortex singularity into higher dimensions, in analogy with the extended-space 
topology of the superfiuid 'He-B vortex core; we also relate this generic behaviour to the 
Laughlin state within the quantum Hall effect. 

B. Introduction 

Recently, in the context of high-T, superconductivity, the fractionally quantised Hall 
effect (QHE) and heavy-fermion metals, a new impetus has been given to a search 
for exotic many-body ground states-both for fermions and for bosons-such as the 
Laughlin ground state in the fractional QHE (Laughlin 1987), the resonant valence bond 
state in the Hubbard model (Liang et a1 1988), their combination (Laughlin 1988), new 
variational functions for strongly correlated fermions (Bouchaud et a1 1988), and pair 
condensation in Bose systems, to name but a few examples. 

We propose that at least some of the new ground states may exist inside the cores of 
quantised vortices in ordinary Bose-condensate superfluids, such as He 11, or in the cores 
of Abrikosov vortices in conventional superconductors, assuming that the vortex-core 
radius is sufficiently greater than the inter-atomic distance. This is normally satisfied in 
superconductors having a large coherence length E ,  but for He 11 it holds only in the 
vicinity of T,, where E(T) becomes long enough. 

Inside the core of a conventional singly quantised vortex in a conventional superfluid 
(superconductor), the conventional superfluidity (superconductivity) is suppressed; the 
order parameter (below, (Y, 9, z )  denote the cylindrical coordinates): 

V" = C(Y> exp(i9) (1.1) 

+ Permanent address: L D Landau Institute for Theoretical Physics. USSR Academy of Sciences, 117334 
Moscow. USSR. 
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Figure 1. (a)  Schematic illustration for the hard-core structure of a singly quantised vortex 
in superfluid jHe-B. The real-space zero of the B-phase vortex dissipates into the point 
vortices (gap nodes) on the Fermi sphere in the A-phase-type superfluidity of the vortex- 
core matter (for full details. see Salomaa and Volovik (1987)). ( b )  The core strilcture of 
a singly quaqtised vortex in a Bose superfluid exhibits, in addition to the bose-condensate 
amplitude (w) which vanishes on the vortex axis, a d-wave pair-condensate amplitude 
concentrated in the hard core of the vortex. The real-space zero on the vortex axis 
dissipates into zeros in the relative space of atoms comprising a d-wave pairing state. (c) 
The singly quantised Abrikosov vortex in a conventional superconductor displays exotic 
four-particle-correlated superconductivity in the vortex-core matter. where the usual 
Cooper-pairing amplitude tends to zero. The real-space zero also dissipates into zeros in 
the reiative space of four aioms. which form the toson Kith the inkiiial orbital iiioineii;iiiii 
L'"' = 2. In (a) ,  ( b )  and (c), points N and M indicate the distances R ,  = Eo( l  - T / T J '  
and RZ = E o ( l  - T/T,). respectively. 

tends to zero on the vortex axis, C(Y = 0) = 0, owing to the winding of the phase by 2n 
around the vortex line. The normal-fluid state in the vortex core proves, however, to be 
unstable and there arise novel states which are intermediate between a normal fluid and 
the conventional superfluid system. 

An example of this kind is provided by the 'He-B vortex (for a review, see Salomaa 
and Volovik (1987)). Superfluid jHe-B may be considered a conventional Fermi super- 
fluid in the sense that the superfluid energy gap is finite everywhere on the Fermi surface. 
Inside the core of this vortex, superfluidity is not broken; instead, the 3He-A state 
appears (figure l(a)) ,  which may be regarded as an intermediate stage between normal 
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liquid ‘He and the conventional superfluid 3He-B; the 3He-A superfluidity is gapless, 
with the gap turning to zero at point nodes on the Fermi surface. 

The most important feature in the appearance of the intermediate states in the 
quantised vortices is the flaring-out of zeros from the real (r)  space; in the example on 
’He-B. the zero in the order parameter at r = 0 in the position space transforms into the 
zeroes of the gap (‘point vortices on the Fermi sphere’) in the momentum space. The 
vortex zero is of topological origin owing to the winding of the phase; it cannot disappear 
but it may. nevertheless, transform into extra dimensions, e.g. into the momentum (k) 
space, thus producing-by necessity-intermediate states of superfluidity in the vortex- 
core matter. 

Another example is provided by the flaring-out of the zeros into the k-space in a 
doubly quantised Abrikosov vortex: inside the core ofthis vortex, a superconducting d- 
wave condensate should appear, with zeros in the superconducting gap on  the Fermi 
surface (Volovik 1988). Here we introduce two further examples of exotic ground states 
within the core matter of quantised vortex lines. 

(i) In the core of the singly quantised vortex in a Bose superfluid, there appears a 
condensate of boson pairs in a relative d-wave state, instead of the normal liquid on the 
vortex axis (see figure l(b)). 

(ii) In the core of the singly quantised Abrikosov vortex in a superconductor, there 
exists a novel correlated superconducting four-particle state with the orbital-momentum 
projection L,  = 2for the composite boson formed by the four fermions (see figure l ( c ) ) .  

We discuss how the flaring-out of zeros into extra dimensions takes piace in this case 
and how the scenario is connected with the Laughlin state in the QHE. The appearance 
of the new correlated states in the cores of singly quantised vortices in the superfluid 
Bose condensate and in superconductors may be seen from symmetry arguments and 
also with use of the Ginzburg-Landau free-energy functional. 

2. Symmetry considerations 

Here it is shown that synmetry dictates the existence of an exotic pairing state in the 
core of a superfluid vortex. Let us begin with the singly quantised vortex in the superfluid 
Bose liquid-such as H e  II-in which the order parameter, the meanvalue of the second- 
quantised annihilation operator 

li, = ( l y )  (2.1) 
has the form li, = qv in equation (1.1). The vortex state ( l . l ) ,  with real C(r) ,  has the 
following symmetries. 

(i) A continuous symmetry described by the generator 
Q = L ,  -1  

which means the axisymmetry of the vortex line. Here f, is the total orbital-momentum 
operator, i, = f y L  + t T t ,  including the internal angular momentum of the particles 
comprising the boson in the Bose condensate, and the angu!ar momentum for the centre- 
of-mass motion of the particles, while f is the number operator for the Bose particles, 
which serves as the generator of the gauge transformation: o(@) = exp(if@). 

The action of this operator on y is as follows: 

p l i , =  0 (2.3) 
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since the bosons in conventional Base superfluids have no internal degrees of freedom, 
while 

,Cyf 7 ~ '  = (i,/i) ( a / a q ) y  (2.4) 

since the centre-of-mass modon just means the partjcle motion. Also, 

(23G) 

(2.5b) 

since the boson in the Bose condensate consists of a single particle, I = 1. 

t y ; y Y  = ?$v7 L';"'q, = 0 and 1 ~ ) ~  = y>,; consequently, one finds that 
According to equations (2.2)-(23, we have for the vortex state yv of equation (1.1) 

A .  

Qyv = 0. (2.6) 

exp(iQ4 Y" = Yv (2.7) 

In other words, there exists a continuous transformation 

with an arbitrary ci which does not char,ge the order parameter of the vortex state (1.1). 
This is just the continuous symmetry of the quantised vortex line. 

(ii) The discrete symmetry pU(n), where P is the space-inversion operation 

P Y ( 4  = W ( - d  (2. s i  

exp(iijt) y(r> = - ~ ( r )  (2.9) 

and U(n) denotes the gauge transformation through the phase 4j = z: 

according to equation (2.5). 

vortex state invariant, i.e. 
For the vertex state of equation (1 . l ) ,  one can check that this combination leaves the 

Pir(n)q" = 7 ) ,  (2.10) 

is obeyed. 

time-inversion operation 
(iii) There exists yet a further combined discrete symmetry, fdx,x> where f is the 

T v  q* (2.11) 

4 . x  V ( d  = Y @A. (2.12) 

ana Gx.x is the space rotation about the axis 2 by the angle z: 

For the vortex state in equation (1. i ) ,  one has 

T o x . x Y \  = Yv 

since C(r> is real. 

(2.13) 

The order parameter Vcli(r)  is zero at the origin, since vVv is an eigenstate of the 
operator if"' (i.e. i e , X t ~ v  = y,)> with the non-vanishing eigenvalue Ly' = 1. This 
implies that the superfluidity of the single-particle condensate is broken on the vortex 
axis. It proves interesting to consider whether some other superfluid state could arise in 
the vortex core. This may occur, provided that the following two conditions are fulfilled. 

(i) The stateshould have the same symmetries (2.7), (2.10) and (2.13) as the original 
vortex state. 
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(ii) It should have vanishing centre-of-mass orbital momentum: i y t  = 0, 
The pair-condensate superfluid state, which is the eigenstate of Iwith the eigenvalue 

I = 2, is a correct candidate if it possesses the internal orbital momentum LTt = 2 for 
the 'Cooper' pairs, and no q-dependence of the centre-of-mass coordinate, i.e. j y t  = 
0; in this case Q = - t y t  = 0, and the first symmetry equation (2.7) is satisfied. In 
order to fulfil also the symmetry (2.10), these 'Cooper' pairs should display an even 
internal momentum; therefore Lint = 2, the minimal possible, i.e. a d-wave pairing state 
occurs inside the core. Thus the order parameter for the pair-correlated state inside the 
core is a traceless symmetric tensor B,, which transforms under a gauge transformation 
as 

O ( 0 ) B i j  = B ,  exp(2iO) (2.14) 

and it is related to the boson pair-condensate 'Gor'kov' function in the following way: 

~ ( r l ,  r2) = ($(ri)$(r?)) = ($(ri))Mr2)) + B,(r)(PiPj - h d i , P 2 > f ( p 2 ,  (P * i12) 
(2.15) 

where the centre-of-mass and the relative coordinates are given, respectively, by 

p = P, - r 2 .  r = i(rl + r 2 )  

The first term on the RHS of equation (2.15) arisesfrom the ordinary single-particle Bose 
condensate, ($) = y. 

The order parameter B&r) depends on :he centre-of-mass coordinate r .  and for the 
state with Lyt = 2,  L","' = 0 in the vortex it has the form 

(2.16) 

The fdx,z symmetry requires C 2 2 ( ~ )  to be real. Now, since the pair-correlated state 

QB; = 0 (2.17a) 

B;(r) = C22(r )  (ai  + ij;) (aj + i j , )  
where i and j are Cartesian coordinates in the plane transverse to the vortex axis ( 2 ) .  

(2.16) has the same symmetry as the single-particle state ( l . l ) ,  i.e. 

owing to 
L F B : ;  = 2B; j y t q  = 0 IB!. 11 = 2BY. 11 (2.17b) 

TQx,,7 B; = P exp(iijz) B; = 13; ( 2 . 1 7 ~ )  

it shdd,  therefcre, necesszri!y be present in the vortex 2nd even dominate near the 
vortex core, where the ordinary superfluidity is suppressed since there is no phase 
winding in (2.16) which would force C2>(r = 0) be be zero; the precise form of G*(Y) 
may be found easily in the Ginzburg-Landau region. 

3. Ginzburg-Landau functional for a mixture of single-particle and pair Bose condensates 

The free-energy functional which describes the appearance of the Bose pair condensate 
in the core of a quantised vortex of the conventional single-particle Bose condensate is 

F = F1 + F2 + F12 (3.1) 
where F1 is the usual Ginzburg-Landau functional for the order parameter I) of the 
conventional single-particle condensate: 

F~ = - n ( t ) 1 ~ 1 2  + g 4 4 4  + Y I V Y I ~  ( 3 4  
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where 

.(z) = L Y o t  t = 1 - T/T,  (3 .3 )  

with 

L Y O  > o  P > O  y > 0. 

s’(z) = [y/LY(z)]1/2 = go t - ’ ! * .  
The temperature-dependent superfluid coherence length is 

(3.4) 
The hnctional F2 is the free energy of a d-wave pair Bose condensate. Since this 

F2 = qB,B? ‘J (3 .5 )  

with q > 0; therefore, all other terms may be neglected. The free-energy contribution F,? 
in equation (3.1) describes the interaction of the single-particle and the pair condensate 
order parameters. The gauge symmetry (the gauge transformations of the fields 7$ and 
B, are given by equations (2.5) and (2.14), respectively), the time-inversion symmetry 
and the rotational symmetry of the free energy enforce the following form upon F12: 

state is unfavourable in the bulk homogeneous liquid, it has a positive quadratic term 

Fl? = E(B$ viyvj?/ + cc). (3 .6)  
All the parameters in the functional (3.1)-with the exception of cu(t)-i.e. /3, y ,  7 and 
E are temperature independent in the Ginzburg-Landau approximation. 

The minimisation of F with respect to B, yields 

Bij = ( ~ / ~ ) ~ i V ~ j Y .  (3.7) 
For the vortex state (l.l), this results in the following distribution of the d-wave pair 
condensate within the vortex: 

B t  = C 2 * ( r ) ( i  + i j ) i ( i  + ij), + C 2 0 ( ~ )  exp(2iq)(djj - i i f j )  

+ C2, - 2 ( r )  exp(4iq) (a - ij)i(.f - i j ) j  

C22(r) = i ( e / r ) [ C ’ ( r )  + C ( Y ) / ~ ] * .  

(3.8) 

(3.9) 

where the amplitude C2?(r) of the d-wave pair state with momentum L:”‘ = 2 is given by 

Above, the prime indicates a radial derivative: C’ = 8 C/dr.  The amplitude C20 for the 

(3.10) 

= Ois pair state with L i n t  = 2, 

C20(4 = K/7)W’(r )12  - [C(r)/rI2) 

while the amplitude C2,-2 for the pair state with L’“‘ = 2 and LFf = -2 equals 

C2.-2(r) = i ( E / V )  [C’(r) - C(r)/rI2.  (3.11) 

Since C(r)  depends linearly on T at the origin, we find for r-+ 0 

C(r)  + a ( z ) r  (3.12) 

with a ( t )  = a o t ,  and where 

a o - L m .  
6 0  

Hence the amplitudes C20 and C2, -2 of the states having a winding phase tend to zero on  
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the vortex axis: C20(r = 0) = C2,-2(r = 0 )  = 0, while the amplitude C2* of the state with 
the quantum numbers L'"'= 2 and L?' = 2 survives even in the vortex core: 

(3.13) 

Let us estimate the influence of the pair condensate. say, on the longitudinal com- 
ponent (along L, the vortex line) of the superfluid density tensor, in comparison with 
that of the single-particle superfluid condensate density near the vortex axis: 

(3.14) 

C22(r = 0 )  = (&/v)a2 = ( & / v ) a ; t 2 .  

p(sl) - ;/iv12 - pr't ' .  

Since c 2 / q  - one finds the following contribution to ps from the pair condensate: 

(3.15) 

The pair condensate superfluid density thus becomes dominant only for distances of the 
order of ro - f o x  G E o  from the vortex axis, which is meaningless in practice for He 11, 
where f o  is of the order of the inter-atomic spacing; however, this length scale becomes 
relevant for the low-temperature superconductors with large coherence length E,,. What 
seems to be more important for He I1 is the internal orbital momentum of the boson pairs 
within the core; this may, in particular, result in an electronic orbital ferromagnetism for 
the 4He atoms-induced by the orbital momentum L',"' of the pair condensate-exactly 
in the same way as for 3He-A (cf Leggett 1977, Paulson and Wheatley 197s). 

Let us now turn to consider how the zeros in the order parameter dissipate in the 
core owing to the pair condensate. 

5-2 4 .  P ( 2 )  S I  - B S o t  

4. Flaring-out of zeros inside the vortex core 

In order to investigate the flaring-out of the vortex singularity, it is helpful to discuss 
the example of the pair function F ( r l ,  r2) in equation (2.15). Introducing the complex 
coordinate Z = x + iy, one may present F(rl. r2)  for the vortex in the following form: 

Fdr1, r2) = ~ ( 1 Z l / ) ~ ( / Z 2 1 ) ~ 1 ~ 2  

+ C22(IZ1 + Z21/2)(Z1 - z2)2f(lzl - (21 - Z 2 l 2 )  (4.1) 

where 

f"( = C(y>/r 
or, for the general case of the vortex located at the point < = x, + iy,, 

F&l 4 = CWl  - Lmz2 - CI)(Zl - C)(Z?. - <) 

+ C22[I(Zl + - tIl(Z1 - Z2)*f(/Zl - (21 - 2 d 2 ) .  (4.2) 

Since C(r) changes from a constant to zero on the path from infinity to the vortex 
axis, while in contrast CZ2(r) changes from zero to a constant value along the same 
path, one has a continuous transformation from the polynomial 

P" = (Zl - C>(& - 5 )  

Pd-wave = (zl  - z 2 ) 2  

(4.3) 

(4.4) 

describing the zeros in the inhomogeneous vortex state, into the polynomial: 
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representing the  zeros in a homogeneous d-wave pairing state with the relative 
momentum Lrt  = 2 inside the core. 

In this transformation, the zeros of Z1 and Z, at the position ( of the vortex flare 
out from the real space into the zeros in the relative-position space. From the 
topological point of view, there thus occurs a deformation of the manifold of zeros of 
the function F(rl, r2). 

The zeros of the complex function 

F ( r l ,  r ; )  = iF(ri, r2)1 exp[i@(.r,, r 2 ) ]  

are topologically stable, since these form the singular manifo!d where the phase 
variable @(rl , r , )  is undefined, owing to its winding around the manifold. That is. 
these are singularities belonging to the homotopy group I l l .  In the four-dimensional 
( Z l ,  2,)-space, the manifold of zeros is a two-dimensional singular surface. In the 
initial case of the polynomial in equation (4.3), this surface consists of two sheets. 
each with unit winding number (n  = 1). i.e. firstly Z,  = (, with Z2 arbitrary. and 
secondly Z ,  = <, with arbitrary Zl ,  while in the non-vanishing state of the polynomials 
(4.4) these sheets merge together, thus forming the singular surface with double 
winding of @(rl ,  r,), i.e. n = 2. 

This is just another representation for the same flaring-out of vorticity that is 
familiar from the Fermi systems. the (rl, r2)-space, instead of the (r,  k)-space, with k 
on the Fermi surface, originating from the relative coordinate rl - r2 in the Fourier 
transform, and r = (rl + r2 ) /2  being the centre-of-mass coordinate. 

The flaring-out of the vorticity into the k-space in the core of the doubly quantised 
Abrikosov vortex in a Fermi superfluid (cf Volovik 1988) may also be given in the 
(Zl, Z,)-representation; the pair function 

r2) = & Q @ l .  rz> (4.5) 

with 

is proportional t o  the polynomial 

P, = [ (Z ,  + 2;)/2 - (1, (4.6) 
outside the core, representing the double vortex in the centre-of-mass space, while in 
the core it transforms into the d-wave state in equation (4.4). This also means the 
reorientation of the two-dimensional manifold of zeros (figure 2) again with double 
winding of the phase. i.e. n = 2. 

It proves instructive to write down the many-body particle wavefunction, describing 
the vortex state in a Bose superfluid: 

Y ( r l ,  . . . , r b )  = ( c F(z, ,  z~)F(z;,  z,). . . F ( Z ~ - ~ ,  zh)) y o ( r l ,  . . . , r b )  

where Yo represents a function without topological zeros. Provided that the amplitude 
C,, of the boson-pair condensate were neglected, this would be just the conventional 
vortex state 

s)mmetnsanon 

(4.7) 

Y" = (Zl - <)(Z, - 0. . . (Z ,  - < > y o  (4.8) 
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Figure 2. Reorientation of the manifold of topological zeros with the charge n = 2 in the 
process of flaring-out of vorticity from (a )  the real-space singularity on the vortex axis of 
a doubly quantised Abrikosov vortex at  the point i‘ = x, + $,. described by 

[(Z, + Z,)j2 - 

into ( b )  the singularity in the relative-coordinate space, described through (Z, - ZZ)?, 
which corresponds to a d-wave superconductivity state of the vortex-core matter with 
point nodes in the gap. 

while in the opposite case, where the amplitude C for the conventional condensate is 
neglected, this would describe the homogeneous d-wave pairing state 

Yd = ( c. ( Z ,  - Z2)’ (Z3  - Z,)? . . . (Z,y-1 - z.v)2) Yo. (4.9) 
symmetrisation 

In the latter case, the transformation from the form (4.8) into equation (4.9) means 
the reorientation and deformation of the (3N - 2)dimensional hypersurface of zeros 
of the complex function Y(rl, . . . , r,\,)> defined in the 3N-dimensional space. 

Thus we have arrived at the classes of the many-body wavefunctions Y; the states 
which map be transformed to each other by the deformation of the manifold of 
topologically stable zeros, without changing the total topological charge (winding 
number), belong to the same class. In this sense, the Bose-superfluid state with one 
vortex is in the same topologicai class as the homogeneous pair-condensate state with 
I,!;”’ = 2. Note that the statement is in fact much more general than in the trivial case 
of the polynomial in Zi: where the class is defined simply by the degree of the 
polynomial, the topological class is defined for a general type of wavefunction depen- 
dent on all the three spatial coordinates x,, y,, z ,  for each particle Y L ,  with the dimension 
of the manifold of zeros being 3N - 2. 

The transformation from one class to another occurs if in the intermediate state 
the manifold of zeros with higher dimension (3N - 1 or 3N) appears or if in the non- 
confined geometry some of the topologically charged zeros move over to infinity. As 
two examples of such transformations in the simplest possible case of a two-dimensional 
phase space ( x ,  y ) ?  when the zero manifold is the system of points. consider 

I: ~ ( x ,  y )  = x + iy tanh a. (4.10) 

When LY changes from - = to x ,  the point zero with the topological charge n = 1 at 
x = 0: y = 0 transforms into the zero with charge n = -1 at the same point. The 
transition occurs at LY = 0. where the manifold of zeros becomes the whole line x = 0. 
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Secondly, consider 

11: ~ ( x ,  y )  = - az'. (4.11) 
Here there are two point zeros at 2 = 0 and 2 = I/a, both with n = 1 and with the 
total charge 2; the second zero goes to infinity for a - 0, thus leaving only unit charge 
in the system. 

It is also instructive to consider the wavefunction of a Bose superfluid with many 
vortices. The state with K vortices and N particles 

(4.12) 
n 6 I\' 

is in the  same class as the homogeneous Laughlin state for the fractional QHE for 
bosons, i.e. 

(4.13) 

with q chosen even for bosons, if the relation 

4( A' - l ) q  = K (4.14) 

is fulfilled, i.e. if the number of vortices is 4 /2  times large: than the number of particles 
in the system. 

The continuous transition from equation (4.12) to equation (4.13), with the fiaring- 
out of zeros from the points in real space into the space of reiative ccordinates. 
occurs through the successive nucleation on the vortex axis of the pair-correlated 
states. four-particle correlated states. etc, until finally the N-particle correlated state 
in equation (4.13) is reached. 

5. Four-particle correlated state in the core of an Abrikosov vortex 

Analogous phenomena take place inside rhe core of a vortex in a conventional singlet 
type II superconductor, described by the complex scalar order-parameter field y. 
which in the vortex has the ordinary form (1.1). The same symmetry arguments ma) 
be applied, with the exceptio!? that nav the D-"----"- opnpra tn r  0 of the ~ogtiniuois symmetrq 
of the vortex is to be replaced by 

g = t, - a1 (5.1) 

owing to the two-particle origin of the condensate in Fermi superfluids, i.e 

1y = 2y (5.22)  

0(0)y = exp(2i0)y (5.2b) 

and the  discrete combined symmetry Po(7i) in equation (2.10) should therefore be 
substituted by p0(n,/2). 

This ordinary type of superconductivity is suppressed on the vortex axis owing to 
the phase winding; hence, the new type of superconductivity shodd  dom' inate near 
the axis with the same symmetry. Salomaa ana Volovik (1987) suggested that. if the 
spin-orbital coupling is essential in a superconductor, then a p-wave state similar to 
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the A phase should arise on the vortex axis. In the strong-coupling limit. the generator 
Q of the continuous vortex symmetry becomes 

(5.3) &spin-orbir = J z  A - il 

where .f, is the total angular-momentum operator: 
j ,  = jz + p + t y i ,  (5.4) 

The core-matter state with L:' = 1: Si = 0 and Lyx' = 0 has the same symmetry 
as the vortex state in s-wave superconductors. with L!? = 0, S ,  = 0: LyL = 1. 
However, the discrete parity Po(x/Z) requires that Lint should be odd for this non- 
vanishing state, which means that the spin of the pairs of the core matter is to be in 
an eigenstate with S = 1: owing to the anti-symmetry of fermionic wavefunctions and, 
therefore, the spin-orbital interaction should be strong enough tc produce a noticeable 
amplitude of the core spin-triplet state in a spin-singlet host superconductor. 

If the spin-orbital interaction is small, then no pair-correlated state arises on the 
Abrikosov vortex axis. However, a different superconducting state should be formed 
in the vortex core in the manner discussed in 80 2 and 3, bljt with the substitution 
1- 1/2. This means that the I = 2 state on the axis of the Bose-fluid vortex corresponds 
to the state with I = 4, with ($$@$) # 0, on the axis of the singly quantised Abrikosov 
vortex, where the ordinary superconducting state is suppressed (($I)) = 0). This is 
the spin-singlet (S = 0) four-particle-ccrre!ated (1 = 4) superconducting state with 
L)' = 2 and Ly' = 0 ,  which has Q = 0 according to equation (5.3). and the same 
discrete symmetries as the vortex in equation (1.1). 

This state is also described by the traceless symmetric matrix Bj j ,  and all the 
Ginzburg-Landau analysis in 8 3 is directly applicable also to the present situation. 
Note that, owing to the large core size of the Abrikosov vortex. the four-correlated 
superconductivity dominates on distances from the vortex axis which are still larger 
than the crystal lattice spacing, and therefore this core state should infiuence the 
observabie change in the quasi-particle spectrum and in the density of states in the 
vortex-core matter. 

6. Discussion 

Many-body wavefunctions may be divided into classes distinguished by the manifolds 
of topologically charged zeros of the wavefunction; functions belonging into the same 
class may be continuously (adiabatically) transformed into each other via a smooth 
deformation of the rnanifold of zeros. The wavefunctioc for the vortex state of a 
conventional superfluid (or superconductor) is in the same class as the homogeneous 
superfluid state: but with an exotic d-wave pair condensate in the Bose liquid (or the 
homogeneous superconducting state with exotic d-wave four-particle condensate). This 
results in the existence of such novel sta.ces of exotic superfiuidity (superconductivity) in 
the cores of the corresponding vortices. 

The transformation inside the given class to some exotic many-particle-correlated 
states (which is adiabatic in nature, since the topological charge is not changed) may 
also occur under an external perturbation, including impurities. An example heie is 
the A A A A  formation of the isotropic four-particle-correlated superconducting state, with 
(Y~ I+ !J~ )  Z 0, in the anisotropic superconductor due to impurities (Volovik and 
Khmel'nitskii 1984). Impurities suppress the anisotropic superconductivity; in the 
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vicinity of the superconducting transition, the order parameter (A)  - ($$) = 0, while 
(AA)  - ( y q q ! ~ ~ )  remains non-zero owing to its isotropy. This mechanism was assumed 
to explain the observed (Smith er a1 1984) splitting of the superconducting phase 
transition in the heavy-fermion compound UBelj  under doping by Th. It is not to be 
excluded that the observed splitting of the transition in the high-ir, superconductor 
Y-Ba-Cu-0 (Indernees er a1 1988, Ishikawa et a1 1988a, b,  Butera 1988) can also be 
reiated to the suppression of a highly anisotropic state by the presence of impurities 
in a narrow temperature interval in the vicinity of T,, where only the more isotropic 
four-particle condensate survives. 

It will be interesting to trace the general behaviour of a many-particle system when 
the topological charge of the zeros in the wavefunction increases and the system 
transforms stepwise from one class into another. Consequently, the state would evolve 
through classes of the intermediate types of superfluidity (with degrading off-diagonal 
long-range order) into classes of states which are normal but exhibit. for a given class. 
distinguishing properties, such as having, for example. a specific value for the Hall 
conductivity in the fractional QHE. 

A . . , . . .  

Acknowledgments 

One of us (GEV) thanks the personnel at  the Low Temperature Laboratory of Helsinki 
University of Technology for kind hospitality. This research has been supported 
through the Award for the Advancement of European Science by the Korber Foun- 
dation (Hamburg, FRG) and also through the project ROTA by the USSR Academy 
of Sciences and by the Academy of Finland. 

References 

Bouchaud J P. Georges A and Lhuillier C 1988 1. Physique 49 553 
Butera R A 1988 Phys. Reu. B 37 5909 
Indernees S E. Salamon M B. Goldenfeld N. Rice J P. Pazol B G.  Ginsberg D M, Liu J Z and Crabtres 

G W 1988 Phys. Rev. Lett. 60 1178 
Ishikawa M. Nakazawa Y. Takabarake T. Kishi A .  Kat0 R and Maesono A 1988a Physica C 1 5 3 4  1089 
- 1988b Solid State Commun. 66 201 
Laughlin R B 1987 The Quantum Hall Effect ed. R E Prange and S M Girvin (New York: Springer) p 233 
- 1988 Phys. Rev. Lett. 60 2677 
Leggett A J 1977 Narure 270 585 
Liang S. Doucot B and Anderson P W 1988 Phys. Rev. Letr. 61 365 
Paulson D N and Wheatley J C 1978 Phys. Reu. Lett 40 557 
Salomaa M IM and Volovik G E 1987 Rev. Mod. Phys. 59 533 
Smith J L. Fisk Z. Willis J 0. Batlogg B and Ott H R 1984 J .  App l .  Phys. 55 1996 
Volovik G E 1988 J .  Phys. C: Solid Stare Phys. 21 L215 
Volovik G E and Khmel’nitskii D E 1984 Zh. Eksp.  Teor. Fiz. 40 469 (Engl. Trans]. 1984 JETP Left. 40 

1299) 


